摘 要:用户的异质性对联邦学习(FL)构成了显著挑战,这可能导致全局模型偏移和收敛速度缓慢。针对此问题,提出一种结合知识蒸馏和潜在空间生成器的联邦学习方法(FedLSG)。该方法通过中央服务器学习一个搭载潜在空(试读)...